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Fast Polynomial Root Finder - Part Four. 
By Henrik Vestermark (hve@hvks.com) 

 
 

Abstract:  
We elaborated in the part Four paper on the Laguerre method for finding Polynomial roots and 
devised a modified version dealing efficiently with Polynomials with real coefficients. This 
paper is part of a multi-series of papers on how to use the same framework to implement 
different root finder methods. 
 

Introduction: 
In the first paper (part one), we developed a highly efficient and robust polynomial root-finder 
based on the Newton method, specifically designed for complex polynomial coefficients. In part 
two we elaborated on the change to dealing with Polynomials with real coefficients. In part three 
we looked at using the same framework to implement higher-order methods (Halley) and 
discussed if we gain any advantages from using higher-order methods compared to the standard 
Newton method. Part Four we look at the Laguerre method and in Part Five we dwell into one of 
the simultaneous methods e.g., the Durand-Kerner a completely different method however we 
will see how we can still fairly easily map it into the existing framework established in parts 
One, Two, and Three. 
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Why Laguerre’s Method? 
 
Before writing this article, I carefully considered selecting a method that diverged from the 
previous parts of the series. I chose Laguerre's method for several compelling reasons, 
particularly its underappreciated efficiency when compared to other root-finding methods. 
Laguerre's method excels with higher-degree polynomials, making it an outstanding choice. 
Unlike many other methods that struggle with accuracy and convergence as polynomial degrees 
increase, Laguerre's method remains robust and effective, even for complex, high-degree 
polynomials. 
Its superior convergence properties are noteworthy, especially when the initial guess is 
reasonably close to a true root. This rapid convergence owes itself in part to the method's 
utilization of both the first and second derivatives of the polynomial in its iterative formula. 
Additionally, Laguerre's method stands out for its ability to handle complex roots adeptly. This is 
a crucial feature since many higher-degree polynomials possess complex roots. It adeptly 
uncovers both real and complex roots. 
Moreover, unlike other methods that might falter or converge to incorrect roots when the initial 
guess is less precise, Laguerre's method boasts strong global convergence characteristics. This 
means it's more likely to converge to a root from a wider range of starting points. 
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In practical scenarios, especially within engineering and the physical sciences where polynomial 
equations are prevalent, Laguerre's method emerges as a reliable and efficient tool for tackling 
complex problems. 

Laguerre's Method: An Efficient Technique for Polynomial Root 
Approximation 
 
Laguerre's method is a powerful numerical approach employed to approximate the roots of 
polynomial equations. It exhibits remarkable effectiveness, especially when dealing with 
polynomials possessing complex roots, often outperforming other root-finding methods, 
including the well-known Newton's method. This method, originally introduced by Laguerre in 
1898, is a significant contribution to numerical analysis, as documented in references like 
McNamee [8] and [11]. 
 
One distinguishing feature of Laguerre's method is its utilization of both the first and second 
derivatives of the polynomial function P(x). This incorporation of derivative information results 
in third-order convergence, which aligns with the convergence rate of the Halley method, as 

described in Part Three. The Polynomial efficient index, denoted as 3
భ

య = 1.44, is shared between 
Laguerre's method and the Halley method. The Laguerre method is: 
 
 

𝑥௡ାଵ = 𝑥௡ −
𝑛

𝐺 ± ඥ(𝑛 − 1)(𝑛𝐻 − 𝐺ଶ)
 

 
The sign ± is chosen to maximize the absolute value of the denominator and  
 

𝐺 =
𝑝′(𝑥௡)

𝑝(𝑥௡)
 𝑎𝑛𝑑 𝐻 = 𝐺ଶ −

𝑝′′(𝑥௡)

𝑝(𝑥௡)
 

 
Where P(x) is the Polynomial, whose root is to be found, P’(x) is the first derivative, and P’’(x) 
is the second derivative of the Polynomial. We notice that the P(xn) is in the denominator of G 
and H and is never zero otherwise we would have stopped the search based on this criterion. 
The method has the advantage of global convergence for most functions, but it's computationally 
more intensive than other methods due to the requirement of calculating both first and second 
derivatives. 
 
Laguerre's method has a third-order rate of convergence for simple roots. This means that the 
number of accurate digits in the approximation roughly triples with each iteration, making it a 
very efficient method for finding the roots of a polynomial. However, the rate of convergence 
may be different for multiple roots. The third-order convergence makes Laguerre's method faster 
than many other root-finding techniques, such as Newton's method, which has a second-order 
rate of convergence for simple roots. 
 
Here is an example of  
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The first root ends up as a complex conjugated root x=(0.80-i1.22). and the third root is just a 
simple real root at ~ 1.5. The remaining two roots are found directly from the deflated 
polynomial. 
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The above picture shows the convergence rate while approaching the roots and is in line with 
expectations.  
 
As for all the root finder methods we have shown so far all are reduced to linear convergence for 
multiple roots (multiplicity > 1). Again, as for the Newton and Halley method, there exists a 
modified version of Laguerre’s method that maintains the third-order convergence rate even for 
multiple roots. 
 
The modified version is  
 

𝑥௡ାଵ = 𝑥௡ −
𝑛

𝐺 ± ටቀ
𝑛
𝑚

− 1ቁ (𝑛𝐻 − 𝐺ଶ)

 

 
Where m is the multiplicity of the root.  
Most often you do not know m beforehand but you can use the same technique as presented in 
Part 1-3 (see the detailed description of the Newton method) where we continue using the below 
formula for m=2 up to n as long as for each m the 𝑃(𝑥௡ାଵ

௠ ) < 𝑃(𝑥௡ାଵ
௠ିଵ)  

 
The modified Laguerre works very well for both Polynomials with real or complex coefficients 
and is a very stable method for finding Polynomial zeros. 
 

Comparing Laguerre and Newton? 
 
To compare different methods with others we can use a well-known efficiency index to see how 
it stacks up against other derivative-based methods. 

The efficiency index is 𝑞
భ

೛, where q is the method convergence order and p is the number of 
polynomial evaluations for the method. For the Newton, method p is 2 since we need to evaluate 
both P(z) and P’(z) per iteration, and the Newton method has a convergence order of q=2 so we 

get Efficiency index= 2
భ

మ = 1.42 
 
For Laguerre’s method, we need to evaluate P(x), P’(x), and P’’(x) for each iteration, we get 

3
భ

య = 1.44 
Slightly larger than the Newton method but not enough that we should expect any measurable 
gain from using Laguerre’s method. 
 

What to Modify? 
Compared to the Newton method (part two) we can luckily reuse most of the code already 
available with the Newton method. 
 
From Part Two, the Steps Include: 

1. Finding an initial point 
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2. Executing the Laguerre iteration, including polynomial evaluation via the Horner method 
3. Calculating the final upper bound 
4. Polynomial deflation 
5. Solving the quadratic equation 

 
Ad 1,3,4,5) Will be identical to the Newton method and need no modification 
   
Ad 2) We can use the Horned method unchanged to evaluate P(x), P’(x), and P’’(x). However, 
we need to add another vector to hold the second derivative P’’(x).  The variable step size to 
handle multiple roots can be changed from m to the formula listed previously. Otherwise, we can 
again reuse the variable step size or reduce the step size and show it in both parts one and two.  
   

The Implementation of the Laguerre Method 
This is the same source as in parts two and three except for the change needed to evaluate 
Laguerre’s iteration step instead of the Newton or Halley step.  
 
The implementation of this root finder follows the method as layout in Part One.  
 

1) First, we eliminate simple roots (roots equal to zero) 
2) Then we find a suitable starting point to start our Laguerre Iteration, this also includes 

termination criteria based on an acceptable value of P(x) where we will stop the current 
iteration. 

3) Start the Laguerre iteration 
a. The first step is to find the dxn=

௡

ீ±ඥ(௡ିଵ)(௡ுିீమ)
 and of course, decide what should 

happen if the denominator is zero. The sign in the denominator is chosen to maximize 
the absolute value of the denominator. When this condition arises, it is most often due 
to a local minimum and the best course of action is to alter the direction with a factor   
dxn=dxn(0.6+i0.8)k.  This is equivalent to rotating the direction with an odd degree of 
53 degrees and multiplying the direction with the factor k. A suitable value for k=5 is 
reasonable when this happens. 

b. Furthermore, it is easy to realize that if P’(xn)~0. You could get some unreasonable 
step size of dxn and therefore introduce a limiting factor that reduces the current step 
size if abs(dxn)>5·abs(dxn-1) than the previous iteration's step size. Again, you alter 
the direction with dxn=dxn(0.6+i0.8)5(abs(dxn-1)/abs(dxn)) if that happens. 

c. These two modifications (a and b) make his method very resilient and make it always 
converge to a root. 

d. The next issue is to handle the issue with multiplicity > 1 which will slow the third-
order convergence rate down to a linear convergence rate. After a suitable dxn is 
found and a new xn+1=xn-dxn   we then look to see if P(xn+1)>P(xn):  If so we look at a 
revised xn+1=xn-0.5dxn and if P(xn+1)≥P(xn) then he used the original xn+1 as the new 
starting point for the next iteration. If not then we accept xn+1 as a better choice and 
continue looking at a newly revised xn+1=xn-0.25dxn. If on the other hand the new  
P(xn+1)≥P(xn) we used the previous xn+1 as a new starting point for the next iterations. 
If not then we assume we are nearing a new saddle point and the direction is altered 
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with  dxn=dxn(0.6+i0.8) and we use xn+1=xn-dxn as the new starting point for the next 
iteration. 
if on the other hand P(xn+1)≤P(xn): Then we are looking in the right direction and we 
then continue stepping in that direction using 𝑥௡ାଵ = 𝑥௡ −

௡

ீ±ටቀ
೙

೘
ିଵቁ(௡ுିீమ)

  m=2,..,n 

as long as P(xn+1)≤P(xn)  and use the best m for the next iterations. The benefit of this 
process is that if there is a root with the multiplicity of m then m will also be the best 
choice for the stepping size and this will maintain the third-order convergence rate 
even for multiple roots. 

4) Processes a-d continue until the stopping criteria are reached where after the root xn is 
accepted and deflated up in the Polynomial. A new search for a root using the deflated 
Polynomial is initiated. 

 
We divide the iterations into two stages. Stage 1 & Stage 2. In stage 1 we are trying to get into 
the convergence circle where we are sure that Laguerre’s method will converge towards a root. 
Since this is a different method, we can’t use the same computation as the Newton method. 
However, we will do it anyway since in practice it works pretty well. When we get into that 
circle, we automatically switch to stage 2. In stage 2 we skip step d) and just use an unmodified 
Laguerre step: 𝑥௡ାଵ = 𝑥௡ −

௡

ீ±ඥ(௡ିଵ)(௡ுିீమ)
  until the stopping criteria have been satisfied. In 

case we get outside the convergence circle, we switch back to stage 1 and continue the iteration. 
We use the same criteria to switch to stage 2 as we did for both the Newton and Halley methods.  
 
Now we have everything we need to determine when to switch to stage 2. 
 
 

The C++ code 
The C++ code below finds the Polynomial roots with Polynomial real coefficients using 
Laguerre’s method. There are only very few changes made from the Newton version to 
implement Laguerre’s method.  
 
/* 
 ******************************************************************************* 
 * 
 *                       Copyright (c) 2023 
 *                       Henrik Vestermark 
 *                       Denmark, USA 
 * 
 *                       All Rights Reserved 
 * 
 *   This source file is subject to the terms and conditions of 
 *   Henrik Vestermark Software License Agreement which restricts the manner 
 *   in which it may be used. 
 * 
 ******************************************************************************* 
*/ 
 
/* 
 ******************************************************************************* 
 * 
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 * Module name     :   Laguerre.cpp 
 * Module ID Nbr   : 
 * Description     :   Solve n degree polynomial using Laguerre's method 
 * -------------------------------------------------------------------------- 
 * Change Record   : 
 * 
 * Version Author/Date  Description of changes 
 * -------  ------------- ---------------------- 
 * 01.01 HVE/24Sep2023 Initial release 
 * 
 * End of Change Record 
 * -------------------------------------------------------------------------- 
*/ 
 
// define version string  
static char _VLaguerre_[] = "@(#)testLaguerre.cpp 01.01 -- Copyright (C) Henrik 
Vestermark"; 
 
#include <algorithm> 
#include <vector> 
#include <complex> 
#include <iostream> 
#include <functional> 
 
//#include "../intervalprecision.h" 
 
using namespace std; 
 
constexpr int       MAX_ITER = 50; 
// Find all polynomial zeros using a modified Laguerre method 
// 1) Eliminate all simple roots (roots equal to zero) 
// 2) Find a suitable starting point 
// 3) Find a root using the Laguerre method 
// 4) Divide the root up in the polynomial reducing its order with one 
// 5) Repeat steps 2 to 4 until the polynomial is of the order of two whereafter the 
remaining one or two roots are found by the direct formula 
// Notice: 
//      The coefficients for p(x) is stored in descending order. coefficients[0] is 
a(n)x^n, coefficients[1] is a(n-1)x^(n-1),...,  coefficients[n-1] is a(1)x, 
coefficients[n] is a(0) 
// 
static vector<complex<double>> PolynomialRootsLaguerre(const vector<double>& 
coefficients) 
{ 
    struct eval { complex<double> z{}; complex<double> pz{}; double apz{}; }; 
    const complex<double> complexzero(0.0);  // Complex zero (0+i0) 
    size_t n;       // Size of Polynomial p(x)   
    eval pz;        // P(z) 
    eval pzprev;    // P(zprev) 
    eval p1z;       // P'(z) 
    eval p1zprev;   // P'(zprev) 
    complex<double> z;      // Use as temporary variable 
    complex<double> dz;     // The current stepsize dz 
    complex<double> newtondz; 
    int itercnt;    // Hold the number of iterations per root 
    vector<complex<double>> roots;  // Holds the roots of the Polynomial 
    vector<double> coeff(coefficients.size()); // Holds the current coefficients of P(z) 
 
    copy(coefficients.begin(), coefficients.end(), coeff.begin()); 
    // Step 1 eliminate all simple roots 
    for (n = coeff.size() - 1; n > 0 && coeff.back() == 0.0; --n) 
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        roots.push_back(complexzero);  // Store zero as the root 
 
    // Compute the next starting point based on the polynomial coefficients 
    // A root will always be outside the circle from the origin and radius min 
    auto startpoint = [&](const vector<double>& a) 
    { 
        const size_t n = a.size() - 1; 
        double a0 = log(abs(a.back())); 
        double min = exp((a0 - log(abs(a.front()))) / static_cast<double>(n)); 
 
        for (size_t i = 1; i < n; i++) 
            if (a[i] != 0.0) 
            { 
                double tmp = exp((a0 - log(abs(a[i]))) / static_cast<double>(n - i)); 
                if (tmp < min) 
                    min = tmp; 
            } 
 
        return min * 0.5; 
    }; 
 
    // Evaluate a polynomial with real coefficients a[] at a complex point z and 
    // return the result  
    // This is Horner's method, avoiding complex arithmetic 
    auto horner = [](const vector<double>& a, const complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        double p = -2.0 * z.real(); 
        double q = norm(z); 
        double s = 0.0; 
        double r = a[0]; 
        eval e; 
 
        for (size_t i = 1; i < n; i++) 
        { 
            double t = a[i] - p * r - q * s; 
            s = r; 
            r = t; 
        } 
 
        e.z = z; 
        e.pz = complex<double>(a[n] + z.real() * r - q * s, z.imag() * r); 
        e.apz = abs(e.pz); 
        return e; 
    }; 
 
    // Calculate an upper bound for the rounding errors performed in a 
    // polynomial with real coefficient a[] at a complex point z.  
    // (Adam's test) 
    auto upperbound = [](const vector<double>& a, const complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        double p = -2.0 * z.real(); 
        double q = norm(z); 
        double u = sqrt(q); 
        double s = 0.0; 
        double r = a[0]; 
        double e = fabs(r) * (3.5 / 4.5); 
        double t; 
 
        for (size_t i = 1; i < n; i++) 
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        { 
            t = a[i] - p * r - q * s; 
            s = r; 
            r = t; 
            e = u * e + fabs(t); 
        } 
        t = a[n] + z.real() * r - q * s; 
        e = u * e + fabs(t); 
        e = (4.5 * e - 3.5 * (fabs(t) + fabs(r) * u) + 
            fabs(z.real()) * fabs(r)) * 0.5 * pow((double)_DBL_RADIX, -DBL_MANT_DIG + 
1); 
 
        return e; 
    }; 
 
    // Do Laguerre iteration for polynomial order higher than 2 
    for (; n > 2; --n) 
    { 
        const double Max_stepsize = 5.0; // Allow the next step size to be up to 5 times 
larger than the previous step size 
        const complex<double> rotation = complex<double>(0.6, 0.8);  // Rotation amount 
        double r;              // Current radius 
        double rprev;          // Previous radius 
        double eps;            // The iteration termination value 
        bool stage1 = true;    // By default it start the iteration in stage1 
        int steps = 1;         // Multisteps if > 1 
        eval p2z;              // P''(z) 
        vector<double> coeffprime;   // vector holding the prime coefficients 
        vector<double> coeffprime2;  // Laguerre vector holding both the prime and 
double prime coefficients 
 
        // Calculate coefficients of p'(x) 
        for (int i = 0; i < n; i++) 
            coeffprime.push_back(coeff[i] * double(n - i)); 
        // Calculate coefficients of p''(x) 
        for (int i = 0; i < n - 1; i++)       // Laguerre 
            coeffprime2.push_back(coeffprime[i] * double(n - i - 1));   // Laguerre  
 
        // Step 2 find a suitable starting point z 
        rprev = startpoint(coeff);      // Computed startpoint 
        z = coeff[n - 1] == 0.0 ? complex<double>(1.0) : complex<double>(-coeff[n] / 
coeff[n - 1]); 
        z *= complex<double>(rprev) / abs(z); 
 
        // Setup the iteration 
        // Current P(z) 
        pz = horner(coeff, z); 
 
        // pzprev which is the previous z or P(0) 
        pzprev.z = complex<double>(0); 
        pzprev.pz = coeff[n]; 
        pzprev.apz = abs(pzprev.pz); 
 
        // p1zprev P'(0) is the P'(0) 
        p1zprev.z = pzprev.z; 
        p1zprev.pz = coeff[n - 1];       // P'(0) 
        p1zprev.apz = abs(p1zprev.pz); 
 
        // Set previous dz and calculate the radius of operations. 
        dz = pz.z;      // dz=z-zprev=z since zprev==0 
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        r = rprev *= Max_stepsize; // Make a reasonable radius of the maximum step size 
allowed 
        // Preliminary eps computed at point P(0) by a crude estimation 
        eps = 2 * n * pzprev.apz * pow((double)_DBL_RADIX, -DBL_MANT_DIG); 
 
        // Start iteration and stop if z doesnt change or apz <= eps 
        // we do z+dz!=z instead of dz!=0. if dz does not change z then we accept z as a 
root 
        for (itercnt = 0; pz.z + dz != pz.z && pz.apz > eps && itercnt < MAX_ITER; 
itercnt++) 
        { 
            complex<double> G, H, gp, gm, u; 
  
            // Calculate current P'(z) and P''(z) 
            p1z = horner(coeffprime, pz.z); 
            p2z = horner(coeffprime2, pz.z); 
            // Compute G and H 
            G = p1z.pz / pz.pz; 
            H = G * G - p2z.pz / pz.pz; 
            H = (complex<double>(static_cast<int>(n)) * H - G * G); // Save H for 
later=nH-G^2 
            u = sqrt(complex<double>(static_cast<int>(n) - 1) * H); 
            gp = G + u; 
            gm = G - u; 
            if (abs(gp) < abs(gm)) 
                gp = gm; 
            // Calculate dz, change directions if zero 
            if (abs(gp) == 0.0)                 // If Laguerre denominator is zero then 
rotate previous dz direction 
                dz *= rotation * complex<double>(Max_stepsize); 
            else 
                dz = complex<double>(static_cast<int>(n)) / gp; 
 
            // Check the Magnitude of Laguerre's step 
             r = abs(dz); 
             if (r > rprev) // Large than 5 times the previous step size 
             {   // then rotate and adjust step size to prevent wild step size near 
P'(z) close to zero 
                 dz *= rotation * complex<double>(rprev / r); 
                 r = abs(dz); 
             } 
             rprev = r * Max_stepsize;  // Save 5 times the current step size for the 
next iteration check of reasonable step size 
 
             // Calculate if stage1 is true or false. Stage1 is false if the 
Newton/Laguerre converge otherwise true 
             z = (p1zprev.pz - p1z.pz) / (pzprev.z - pz.z); 
             stage1 = (abs(z) / p1z.apz > p1z.apz / pz.apz / 4) || (steps != 1); 
         
            // Step accepted. Save pz in pzprev 
            pzprev = pz; 
 
            z = pzprev.z - dz;      // Next z 
            pz = horner(coeff, z);  //ff = pz.apz; 
            steps = 1; 
            if (stage1) 
            {  // Try multiple steps or shorten steps depending if P(z) is an 
improvement or not P(z)<P(zprev) 
                bool div2; 
                complex<double> zn, dzn=dz; 
                eval npz; 
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                steps++; 
                for (div2 = pz.apz > pzprev.apz; steps <= n; ++steps) 
                { 
                    if (div2 == true) 
                    {  // Shorten steps 
                        dzn *= complex<double>(0.5); 
                        zn = pzprev.z - dz; 
                    } 
                    else 
                    {   // Compute new dz 
                        dzn = sqrt(complex<double>(double(n)/double(steps) - 1) * H); 
                        gp = G + dzn; 
                        gm = G - dzn; 
                        if (abs(gp) < abs(gm)) 
                            gp = gm; 
                        dzn = complex<double>(static_cast<int>(n)) / gp;  
                        zn = pzprev.pz - dzn; 
                    } 
                    // Evaluate new try step 
                    npz = horner(coeff, zn); 
                    if (npz.apz >= pz.apz) 
                    { 
                        --steps; break; // Break if no improvement 
                    } 
 
                    // Improved => accept step and try another round of step 
                    pz = npz; 
                    dz = dzn; 
 
                    if (div2 == true && steps == 3) 
                    {   // To many shorten steps => try another direction and break 
                        dz *= rotation; 
                        z = pzprev.z - dz; 
                        pz = horner(coeff, z); 
                        break; 
                    } 
                } 
            } 
            else 
            {   // calculate the upper bound of error using Grant & Hitchins's test for 
complex coefficients 
                // Now that we are within the convergence circle. 
                eps = upperbound(coeff, pz.z); 
            } 
        } 
 
        // Real root forward deflation. 
        // 
        auto realdeflation = [&](vector<double>& a, const double x) 
        { 
            const size_t n = a.size() - 1; 
            double r = 0.0; 
 
            for (size_t i = 0; i < n; i++) 
                a[i] = r = r * x + a[i]; 
 
            a.resize(n);    // Remove the highest degree coefficients. 
        }; 
 
        // Complex root forward deflation for real coefficients 
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        // 
        auto complexdeflation = [&](vector<double>& a, const complex<double> z) 
        { 
            const size_t n = a.size() - 1; 
            double r = -2.0 * z.real(); 
            double u = norm(z); 
 
            a[1] -= r * a[0]; 
            for (int i = 2; i < n - 1; i++) 
                a[i] = a[i] - r * a[i - 1] - u * a[i - 2]; 
 
            a.resize(n - 1); // Remove top 2 highest degree coefficients 
        }; 
 
        // Check if there is a very small residue in the imaginary part by trying 
        // to evaluate P(z.real). if that is less than P(z). We take that z.real() is a 
better root than z. 
        z = complex<double>(pz.z.real(), 0.0); 
        pzprev = horner(coeff, z); 
        if (pzprev.apz <= pz.apz) 
        { // real root  
            pz = pzprev; 
            // Save the root 
            roots.push_back(pz.z); 
            realdeflation(coeff, pz.z.real()); 
        } 
        else 
        {   // Complex root 
            // Save the root 
            roots.push_back(pz.z); 
            roots.push_back(conj(pz.z)); 
            complexdeflation(coeff, pz.z); 
            --n; 
        } 
 
    }   // End Iteration 
 
    // Solve any remaining linear or quadratic polynomial 
    // For Polynomial with real coefficients a[],  
    // The complex solutions are stored in the back of the roots 
    auto quadratic = [&](const std::vector<double>& a) 
    { 
        const size_t n = a.size() - 1; 
        complex<double> v; 
        double r; 
 
        // Notice that a[0] is !=0 since roots=zero has already been handle 
        if (n == 1) 
            roots.push_back(complex<double>(-a[1] / a[0], 0)); 
        else 
        { 
            if (a[1] == 0.0) 
            { 
                r = -a[2] / a[0]; 
                if (r < 0) 
                { 
                    r = sqrt(-r); 
                    v = complex<double>(0, r); 
                    roots.push_back(v); 
                    roots.push_back(conj(v)); 
                } 
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                else 
                { 
                    r = sqrt(r); 
                    roots.push_back(complex<double>(r)); 
                    roots.push_back(complex<double>(-r)); 
                } 
            } 
            else 
            { 
                r = 1.0 - 4.0 * a[0] * a[2] / (a[1] * a[1]); 
                if (r < 0) 
                { 
                    v = complex<double>(-a[1] / (2.0 * a[0]), a[1] * sqrt(-r) / (2.0 * 
a[0])); 
                    roots.push_back(v); 
                    roots.push_back(conj(v)); 
                } 
                else 
                { 
                    v = complex<double>((-1.0 - sqrt(r)) * a[1] / (2.0 * a[0])); 
                    roots.push_back(v); 
                    v = complex<double>(a[2] / (a[0] * v.real())); 
                    roots.push_back(v); 
                } 
            } 
        } 
        return; 
    }; 
 
    if (n > 0) 
        quadratic(coeff); 
 
    return roots; 
} 
 

Example 1. 
Here is an example of how the above source code is working. 
 
For the real Polynomial: 
+1x^4-10x^3+35x^2-50x+24 
Start Laguerre IteraƟon for Polynomial=+1x^4-10x^3+35x^2-50x+24 
 Stage 1=>Stop CondiƟon. |f(z)|<2.13e-14 
 Start    : z[1]=0.2 dz=2.40e-1 |f(z)|=1.4e+1 
IteraƟon: 1 
 Laguerre Step:  z[1]=1 dz=-7.46e-1 |f(z)|=8.9e-2 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-7.46e-1 |f(z)|=8.1e-1 
         : No improvement. Discard the last try step 
IteraƟon: 2 
 Laguerre Step:  z[1]=1 dz=-1.45e-2 |f(z)|=2.1e-6 
 In Stage 2. New Stop CondiƟon: |f(z)|<2.18e-14 
IteraƟon: 3 
 Laguerre Step:  z[1]=1 dz=-3.53e-7 |f(z)|=1.1e-14 
 In Stage 2. New Stop CondiƟon: |f(z)|<2.18e-14 
Stop Criteria saƟsfied aŌer 3 IteraƟons 
Final Laguerre  z[1]=1 dz=-3.53e-7 |f(z)|=1.1e-14 
AlteraƟon=0% Stage 1=33% Stage 2=67% 



Fast Polynomial Root Finder  - Part Four 

Page | 15    26 November 2023 
 

 Deflate the real root z=1.0000000000000009 
Start Laguerre IteraƟon for Polynomial=+1x^3-9x^2+25.999999999999993x-23.999999999999986 
 Stage 1=>Stop CondiƟon. |f(z)|<1.60e-14 
 Start    : z[1]=0.5 dz=4.62e-1 |f(z)|=1.4e+1 
IteraƟon: 1 
 Laguerre Step:  z[1]=2 dz=-1.52e+0 |f(z)|=4.7e-2 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=2 dz=-1.52e+0 |f(z)|=3.4e-1 
         : No improvement. Discard the last try step 
IteraƟon: 2 
 Laguerre Step:  z[1]=2 dz=-2.27e-2 |f(z)|=1.4e-6 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.42e-14 
IteraƟon: 3 
 Laguerre Step:  z[1]=2 dz=-6.91e-7 |f(z)|=0 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.42e-14 
Stop Criteria saƟsfied aŌer 3 IteraƟons 
Final Laguerre  z[1]=2 dz=-6.91e-7 |f(z)|=0 
AlteraƟon=0% Stage 1=33% Stage 2=67% 
 Deflate the real root z=2 
Solve Polynomial=+1x^2-7x+11.999999999999993 directly 
Using the Laguerre Method, the SoluƟons are: 
X1=1.0000000000000009 
X2=2 
X3=4.000000000000007 
X4=2.999999999999993 
Time used: 1 msec. Solvable level: Easy 
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Example 2. 
The same example just with a double root at x=1. We see that each step is a double step in line 
with a multiplicity of 2 for the first root. 
 
For the real Polynomial: 
+1x^4-9x^3+27x^2-31x+12 
Start Laguerre IteraƟon for Polynomial=+1x^4-9x^3+27x^2-31x+12 
 Stage 1=>Stop CondiƟon. |f(z)|<1.07e-14 
 Start    : z[1]=0.2 dz=1.94e-1 |f(z)|=6.9e+0 
IteraƟon: 1 
 Laguerre Step:  z[1]=0.8 dz=-6.32e-1 |f(z)|=2.1e-1 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-6.32e-1 |f(z)|=3.5e-6 
         : Improved. ConƟnue stepping 
 Try Step:  z[1]=1 dz=-6.32e-1 |f(z)|=1.2e-1 
         : No improvement. Discard the last try step 
IteraƟon: 2 
 Laguerre Step:  z[1]=1 dz=-5.59e-4 |f(z)|=2.5e-7 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-5.59e-4 |f(z)|=0 
         : Improved. ConƟnue stepping 
 Try Step:  z[1]=1 dz=-5.59e-4 |f(z)|=2.5e-7 
         : No improvement. Discard the last try step 
Stop Criteria saƟsfied aŌer 2 IteraƟons 
Final Laguerre  z[1]=1 dz=-5.59e-4 |f(z)|=0 
AlteraƟon=0% Stage 1=100% Stage 2=0% 
 Deflate the real root z=0.9999999999981045 
Start Laguerre IteraƟon for Polynomial=+1x^3-8.000000000001895x^2+19.00000000001327x-
12.000000000022744 
 Stage 1=>Stop CondiƟon. |f(z)|<7.99e-15 
 Start    : z[1]=0.3 dz=3.16e-1 |f(z)|=6.8e+0 
IteraƟon: 1 
 Laguerre Step:  z[1]=1 dz=-6.83e-1 |f(z)|=6.3e-3 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-6.83e-1 |f(z)|=1.2e+0 
         : No improvement. Discard the last try step 
IteraƟon: 2 
 Laguerre Step:  z[1]=1 dz=-1.05e-3 |f(z)|=4.8e-11 
 In Stage 2. New Stop CondiƟon: |f(z)|<6.66e-15 
IteraƟon: 3 
 Laguerre Step:  z[1]=1 dz=-7.96e-12 |f(z)|=8.9e-16 
 In Stage 2. New Stop CondiƟon: |f(z)|<6.66e-15 
Stop Criteria saƟsfied aŌer 3 IteraƟons 
Final Laguerre  z[1]=1 dz=-7.96e-12 |f(z)|=8.9e-16 
AlteraƟon=0% Stage 1=33% Stage 2=67% 
 Deflate the real root z=1.0000000000018952 
Solve Polynomial=+1x^2-7x+12.000000000000004 directly 
Using the Laguerre Method, the SoluƟons are: 
X1=0.9999999999981045 
X2=1.0000000000018952 
X3=3.9999999999999964 
X4=3.0000000000000036 
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Time used: 0 msec. Solvable level: Easy 
 

 
Example 3. 
A test polynomial with both real and complex conjugated roots. 
 
For the real Polynomial: 
+1x^4-8x^3-17x^2-26x-40 
Start Laguerre IteraƟon for Polynomial=+1x^4-8x^3-17x^2-26x-40 
 Stage 1=>Stop CondiƟon. |f(z)|<3.55e-14 
 Start    : z[1]=-0.8 dz=-7.67e-1 |f(z)|=2.6e+1 
IteraƟon: 1 
 Laguerre Step:  z[1]=-2 dz=1.17e+0 |f(z)|=1.9e+1 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=-3 dz=1.17e+0 |f(z)|=9.3e+1 
         : No improvement. Discard the last try step 
IteraƟon: 2 
 Laguerre Step:  z[1]=-2 dz=-2.91e-1 |f(z)|=8.4e-2 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.91e-14 
IteraƟon: 3 
 Laguerre Step:  z[1]=-2 dz=1.58e-3 |f(z)|=2.0e-8 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.91e-14 
IteraƟon: 4 
 Laguerre Step:  z[1]=-2 dz=-3.81e-10 |f(z)|=2.8e-14 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.91e-14 
IteraƟon: 5 
 Laguerre Step:  z[1]=-2 dz=-5.34e-16 |f(z)|=0 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.91e-14 
Stop Criteria saƟsfied aŌer 5 IteraƟons 
Final Laguerre  z[1]=-2 dz=-5.34e-16 |f(z)|=0 
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AlteraƟon=0% Stage 1=20% Stage 2=80% 
 Deflate the real root z=-1.650629191439388 
Start Laguerre IteraƟon for Polynomial=+1x^3-9.650629191439387x^2-1.0703897408530487x-
24.233183447530717 
 Stage 1=>Stop CondiƟon. |f(z)|<1.61e-14 
 Start    : z[1]=-0.8 dz=-7.92e-1 |f(z)|=3.0e+1 
IteraƟon: 1 
 Laguerre Step:  z[1]=(-0.4+i1) dz=(-4.08e-1-i1.45e+0) |f(z)|=7.2e+0 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=(0.5+i2) dz=(-4.08e-1-i1.45e+0) |f(z)|=4.3e+1 
         : No improvement. Discard the last try step 
IteraƟon: 2 
 Laguerre Step:  z[2]=(-0.17+i1.5) dz=(-2.09e-1-i9.45e-2) |f(z)|=1.0e-2 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.36e-14 
IteraƟon: 3 
 Laguerre Step:  z[5]=(-0.17469+i1.5469) dz=(-5.79e-5+i3.16e-4) |f(z)|=2.7e-11 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.36e-14 
IteraƟon: 4 
 Laguerre Step:  z[13]=(-0.1746854042803+i1.546868887231) dz=(-7.87e-13+i3.54e-13) |f(z)|=3.6e-15 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.36e-14 
Stop Criteria saƟsfied aŌer 4 IteraƟons 
Final Laguerre  z[13]=(-0.1746854042803+i1.546868887231) dz=(-7.87e-13+i3.54e-13) |f(z)|=3.6e-15 
AlteraƟon=0% Stage 1=25% Stage 2=75% 
 Deflate the complex conjugated root z=(-0.17468540428030604+i1.5468688872313963) 
Solve Polynomial=+1x-10 directly 
Using the Laguerre Method, the SoluƟons are: 
X1=-1.650629191439388 
X2=(-0.17468540428030604+i1.5468688872313963) 
X3=(-0.17468540428030604-i1.5468688872313963) 
X4=10 
Time used: 1 msec. Solvable level: Easy 
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The iterations trail towards the first two roots. 
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Recommendation 
Since the efficiency index is comparable to Laguerre’s methods there are no advantages or 
disadvantages to using Laguerre’s over the Halley or Newton. I recommend sticking with the 
Newton method presented in Parts One and Two for simplicity. However, if you choose the 
Laguerre method you will not be disappointed. 
 
 

Conclusion 
We have presented a refined Laguerre’s method, with a convergence rate of 3 (comparable to the 
Halley method) building upon the framework established in parts one, two, and three to 
efficiently and stably find roots of polynomials with real coefficients. I think it is a matter of 
taste and preference whether or not to use Laguerre’s method over e.g., Newton's or Halley's 
method. A web-based polynomial solver showcasing these various methods is available for 
further exploration and can be found on Polynomial roots that demonstrate many of these 
methods in action. In Part Five we will examine one of the so-called simultaneous methods 
(Durand-Kerner. Aka. Weierstrass method) 
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